Politecnico di Milano – Ingegneria Industriale

Analisi e Geometria	1
---------------------	---

 $Primo\ compito\ in\ itinere\ -\ 8\ Novembre\ 2021$

Cognome:	Matricola:		
Nome:	Punteggio Totale:	_ Punteggio Totale:	
	ngono corrette. I fogli di brutta non devono essere consegn di libri, appunti, calcolatrici e apparecchiature elettronici		
Tempo. 1 ora.			
1. (1 affermazione corretta, 1 punto) Qu	uale delle seguenti affermazioni è vera?		
(a) In \mathbb{R} , una successione di numeri	razionali non può convergere a $\sqrt{2}$.	\bigcirc	
(b) Se $x, y \in \mathbb{R}$, $x < y$, esiste $c \in \mathbb{Q}$	tale che $x < c < y$.		
(c) Se $x, y \in \mathbb{R}$, $x < y$, esiste $c \in \mathbb{Z}$ t	tale che $x < c < y$.	0 0 0	
(d) In \mathbb{R} , ogni successione converger	nte è monotòna.	\bigcirc	
(e) Nessuna delle altre affermazioni	è corretta.	\bigcirc	
2. (1 affermazione corretta, 1 punto) Sia nel modo seguente: $a_n = n \log_e \left(1 + \frac{1}{n}\right)$	no $(a_n), (b_n)$ le successioni reali definite (per n intero $\frac{1}{n}$), $b_n = \left(1 - \frac{1}{2n}\right)^n$.	positivo)	
(a) $\lim_{n \to +\infty} a_n = +\infty$ e $\lim_{n \to +\infty} b_n =$, , ,	\circ	
(b) $\lim_{n \to +\infty} a_n = 0$ e $\lim_{n \to +\infty} b_n = \frac{e}{2}$		\bigcirc	
		0	
(c) $\lim_{n \to +\infty} a_n = 1$ e $\lim_{n \to +\infty} b_n = 0$		O	
(d) $\lim_{n \to +\infty} a_n = 1$ e $\lim_{n \to +\infty} b_n = e^{-1}$	1/2	\bigcirc	
(e) Nessuna delle altre affermazioni	è corretta.	\bigcirc	
3. (1 affermazione corretta, 1 punto) Po	oniamo: $\mathbb{C} \xrightarrow{f} \mathbb{C}$, $f(z) = z^4$ per ogni $z \in \mathbb{C}$.		
(a) Esiste un elemento nel codomini	io che ha esattamente 2 controimmagini.	\bigcirc	
(b) Esiste un elemento del codomini		\bigcirc	
(c) f è invertibile.		O	
(d) f è suriettiva.			
(e) f è iniettiva.		\bigcirc	
4. (1 affermazione corretta, 1 punto) Co	onsideriamo il numero complesso $z = \frac{(1-i)^6}{(1+i\sqrt{3})^2}$.		
(a) $ z = 2$		\bigcirc	
(b) $ z = \frac{1}{2}$		\bigcirc	
-		0	
(c) $\arg z = \frac{\pi}{4}$		\cup	
(d) $\arg z = \frac{\pi}{2}$		\bigcirc	
(e) Nessuna delle altre affermazioni	è corretta.	\bigcirc	

- 5. (1 affermazione corretta, 1 punto) Siano $I\subseteq\mathbb{R}$ un intervallo, $I\stackrel{f}{\longrightarrow}\mathbb{R}$ una funzione continua, J=f(I) l'immagine di f.
 - (a) Se I è limitato superiormente, allora J è limitato superiormente.
 - (b) Se $J = \mathbb{R}$, f è invertibile.
 - (c) f assume massimo assoluto e minimo assoluto.
 - (d) J è un intervallo.
 - (e) Nessuna delle altre affermazioni è corretta.
- 6. (1 affermazione corretta, 1 punto) Il limite $\lim_{x\to 0} \frac{\sin(x^2)}{\log_e(1+x^2)+\mathrm{e}^{x^2}-1}$ vale:
 - (a) 0
 - (b) 1
 - $\begin{array}{c}
 \text{(c) } 2\\
 \text{(d) } \frac{1}{2}
 \end{array}$
 - (e) Nessuna delle altre affermazioni è corretta.
- 7. (2 affermazioni corrette; 2 punti) Definiamo: $\mathbb{R} \xrightarrow{f} \mathbb{R}$, per ogni $x \in \mathbb{R}$

$$f(x) = \begin{cases} 3x + x^2 \sin\frac{1}{x} & \text{se } x \neq 0 \\ 0 & \text{se } x = 0 \end{cases}$$

- (a) f non è derivabile in 0.
- (b) f è derivabile in 0 e f'(0) = 0. \Box (c) f è derivabile in 0 e f'(0) = 3. \Box
- (d) Per $x \neq 0$, $f'(x) = 3 + 2x \sin \frac{1}{x} \cos \frac{1}{x}$.
- (e) Per $x \neq 0$, $f'(x) = 3 + 2x \sin \frac{1}{x} + x^2 \cos \frac{1}{x}$.
- 8. (2 affermazioni corrette; 2 punti) Sia f la funzione così definita:

$$\mathbb{R} \xrightarrow{f} \mathbb{R}, \qquad \forall x \in \mathbb{R} \quad f(x) = e^{3x^4 - 4x^3}$$

- (a) $\forall x \in \mathbb{R} \quad f''(x) > 0$
- (b) $x_0 = 1$ è un punto di minimo locale per f.
- (b) $x_0 = 1$ è un punto di minimo locale per f. \Box (c) $x_0 = 1$ è un punto di massimo locale per f. \Box
- (d) Esiste un punto $a \in (0,1)$ in cui f''(a) = 0.
- (e) f è strettamente crescente su \mathbb{R} .