Analisi Matematica II	Primo Appello – 2 Febbraio 2022 Matricola:		
Cognome:			
Nome:	Punteggio Totale:		
	o corrette. I fogli di brutta non devono essere con- uso di libri, appunti, calcolatrici e apparecchiature		
1. (Domanda a risposta singola, 2 punti) Sia f	$: \mathbb{R}^2 \to \mathbb{R} \;$ la funzione definita da		
f(x,y)	$= (x^2 + y^2) e^{xy}.$		
Sia $D_{\mathbf{v}}f(\mathbf{x}_0)$ la derivata direzionale di f lu	ango il versore $\mathbf{v} = \left(\frac{1}{2}, \frac{\sqrt{3}}{2}\right)$ nel punto $\mathbf{x}_0 = (1, 1)$.		
(a) $D_{\mathbf{v}}f(\mathbf{x}_0) = 0$			
(b) $D_{\mathbf{v}} f(\mathbf{x}_0) = 1$ (c) $D_{\mathbf{v}} f(\mathbf{x}_0) = 4 e$			
(d) $D_{\mathbf{v}}f(\mathbf{x}_0) = 4 e (1 + \sqrt{3})$			
(e) $D_{\mathbf{v}}f(\mathbf{x}_0) = 2 e (1 + \sqrt{3})$			
(f) $D_{\mathbf{v}}f(\mathbf{x}_0) = 2(1+\sqrt{3})$			
(g) $D_{\mathbf{v}}f(\mathbf{x}_0)$ non esiste.	C		
2. (Domanda a risposta singola, 2 punti) Sia f	$: \mathbb{R}^2 \to \mathbb{R} \;\; \text{la funzione definita da}$		
f(x,y) =	$x^2y + xy^2 + xy.$		
(a) f non possiede punti critici.			
(b) f possiede tre punti critici.	C		
(c) f possiede infiniti punti critici.	C		
(d) f possiede un punto di sella in $(1,0)$.	C		
(e) f possiede un punto di sella in $(0,1)$.	C		
(f) f possiede un punto di minimo in $(1, 1)$	1).		
(g) f possiede un punto di minimo in (-1)	,-1).		
(h) f possiede un punto di massimo in (0,	0).		
(i) f possiede un punto di massimo in $(-$	1/3, -1/3).		

3. (Domanda a risposta multipla, 3 punti) Si consideri la trasformazione $\,F:\mathbb{R}^2 \to \mathbb{R}^2\,$ definita da

$$F(x,y) = (e^{x^2+y}, e^{x+y^2}).$$

(a)	F è regolare su tutto	\mathbb{R}^2 .	
(b)	I punti singolari di F	si dispongono lungo una parabola.	
(c)	I punti singolari di F	si dispongono lungo una ellisse.	
(d)	I punti singolari di F	si dispongono lungo una iperbole.	
(e)	F è iniettiva.		
(f)	F è suriettiva.		
(g)	L'immagine di F è co	ntenuta nel primo quadrante.	
(h)	L'immagine di F è lin	nitata.	

4. (Domanda a risposta singola, 2 punti) Si consideri l'integrale doppio

$$I = \iint_{\Omega} xy \, \mathrm{d}x \, \mathrm{d}y$$

dove $\Omega = \{(x, y) \in \mathbb{R}^2 : x^2 + y^2 \le 1, x + y \ge 1\}.$

(a)
$$I = 0$$
.

(b)
$$I = 1$$
.

(c)
$$I = -\frac{1}{2}$$
.

(d)
$$I = \frac{1}{4}$$
.

(e)
$$I = -\frac{1}{6}$$
.

(f)
$$I = \frac{1}{12}$$
.

(g)
$$I = -\frac{1}{24}$$
.

5. (Domanda a risposta multipla, 3 punti) Si consideri l'integrale di linea

$$I = \int_{\gamma} \frac{1}{(1 + 3x + y + z)^{3/2}} \, \mathrm{d}s.$$

dove

$$\gamma: \begin{cases} x = t + t^2/2 \\ y = 1 - t \\ z = t^2/2 \end{cases} \qquad t \in [0, 1].$$

(a)
$$\gamma$$
 è contenuta nel piano π : $x + y + z = 1$.

(b)
$$\gamma$$
 è contenuta nel piano π : $x-y+z=1$.

(c)
$$\gamma$$
 è contenuta nel piano π : $x+y-z=1$.

(d)
$$\gamma$$
 non è piana.

(e)
$$\gamma$$
 è regolare.

(f)
$$\gamma$$
 è biregolare.
 (g) $I = 0$.

(b)
$$I = \frac{\pi}{2\sqrt{3}}$$
.

(i)
$$I = \frac{\pi}{6\sqrt{2}}$$
.

$$I = \frac{\pi}{6\sqrt{3}}.$$

6. (Domanda a risposta aperta, 3 punti) Il lavoro del campo

$$\mathbf{F} = (x - y - 2z, 2x + 3y - z, x + 2y + 2z)$$

lungo la curva (orientata opportunamente)

$$\gamma: \begin{cases} x^2 + y^2 + z^2 - 8x - 4y - 2z + 19 = 0\\ x - y - z = 1 \end{cases}$$

è L =

7. (Domanda a risposta aperta, 3 punti) Il flusso del campo

$$\mathbf{F} = (x + y + z, x - y + z, xy)$$

attraverso la superficie

$$\Sigma: \begin{cases} x = u \\ y = v \\ z = 0 \end{cases} \quad u, v \in [0, 1]$$

orientata mediante il versore $\,{\bf k}\,$ è $\,\Phi=$

8. (Domanda a risposta aperta, 2 punti) Scrivere la soluzione generale dell'equazione differenziale

$$y''(x) - 4y'(x) + 4y(x) = e^x.$$

9. (Domanda a risposta multipla, 2 punti) Sia $f:\mathbb{R}\to\mathbb{R}$ la funzione 2π -periodica definita da

$$f(x) = \sin x \cdot \sin(x^2)$$
 per $x \in [-\pi, \pi)$

e sia $F(x) = \frac{a_0}{2} + \sum_{n \geq 1} (a_n \cos nx + b_n \sin nx)$ la sua serie di Fourier.

- (a) La serie F(x) converge in media quadratica su $[-\pi, \pi]$.
- (b) La serie F(x) converge puntualmente a f(x) per ogni $x \in \mathbb{R}$.
- (c) La serie F(x) converge puntualmente in $x = \pm \pi$, ma non a f(x).
- (d) La serie F(x) definisce una funzione continua su tutto $\mathbb R$.
- (e) I coefficienti a_n sono tutti nulli.
- (f) I coefficienti b_n sono tutti nulli.

10. (Domanda a risposta aperta, 2 punti) Scrivere il disco di convergenza della serie complessa

$$\sum_{n\geq 0} \frac{n!}{n^n} z^n.$$

Cognome e Nome:

Esercizio da svolgere (5 punti)

Calcolare l'integrale

$$I = \int_{\gamma} \frac{\mathrm{e}^{\pi/z^3}}{z(1 - \mathrm{i}\,z^3)} \,\mathrm{d}z$$

dove $\,\gamma\,:\,|z|=1/2\,$ è orientata negativamente.

Cognome e Nome:		

Domande teoriche (4 punti)

- 1. (0.5 punti) Dare la definizione di derivata direzionale di una funzione $\,f:\mathbb{R}^n \to \mathbb{R}\,.$
- $2.\ (0.5\ \mathrm{punti})$ Enunciare il teorema di Liouville per le funzioni complesse.
- 3. (3 punti) Enunciare e dimostrare il teorema di struttura dello spazio delle soluzioni di un'equazione lineare generale.