Politecnico di Milano – Ingegneria Industriale e dell'Informazione

Analisi Matematica	II
--------------------	----

Primo Appello - 2 Febbraio 2022

nome: Matricola:	
e: Punteggio Totale:	
Istruzioni. Segnare le risposte che si ritengono corrette. I fogli di brutta non devono essere con segnati. Durante la prova non è consentito l'uso di libri, appunti, calcolatrici e apparecchiatu elettroniche. Tempo. 1 ora e 30 minuti.	
(Domanda a risposta singola 2 punti) Sia $f: \mathbb{R}^2 \to \mathbb{R}$ la funzione definita da	
$f(x,y) = (x^2 + y^2) \mathrm{e}^{xy} .$	
Sia $D_{\mathbf{v}}f(\mathbf{x}_0)$ la derivata direzionale di f lungo il versore $\mathbf{v} = \left(\frac{1}{2}, \frac{\sqrt{3}}{2}\right)$ nel punto $\mathbf{x}_0 = (1, \frac{1}{2}, \frac{\sqrt{3}}{2})$	1, 1) .
(a) $D_{\mathbf{v}} f(\mathbf{x}_0) = 0$ (b) $D_{\mathbf{v}} f(\mathbf{x}_0) = 1$ (c) $D_{\mathbf{v}} f(\mathbf{x}_0) = 4 e$ (d) $D_{\mathbf{v}} f(\mathbf{x}_0) = 4 e (1 + \sqrt{3})$	0 0
(e) $D_{\mathbf{v}}f(\mathbf{x}_0) = 2e(1+\sqrt{3})$ (f) $D_{\mathbf{v}}f(\mathbf{x}_0) = 2(1+\sqrt{3})$ (g) $D_{\mathbf{v}}f(\mathbf{x}_0)$ non esiste.	Ø 0
(Domanda a risposta singola, 2 punti) Sia $f:\mathbb{R}^2 \to \mathbb{R}$ la funzione definita da	
$f(x,y) = x^2y + xy^2 + xy.$	
 (a) f non possiede punti critici. (b) f possiede tre punti critici. (c) f possiede infiniti punti critici. (d) f possiede un punto di sella in (1,0). (e) f possiede un punto di sella in (0,1). (f) f possiede un punto di minimo in (1,1). 	0 0 0 0 0
 (g) f possiede un punto di minimo in (-1,-1). (h) f possiede un punto di massimo in (0,0). (i) f possiede un punto di massimo in (-1/3,-1/3). 	⊘
(Domanda a risposta multipla, 3 punti) Si consideri la trasformazione $F: \mathbb{R}^2 \to \mathbb{R}^2$ definit	a da
$F(x,y) = (e^{x^2+y}, e^{x+y^2}).$	
 (a) F è regolare su tutto R². (b) I punti singolari di F si dispongono lungo una parabola. (c) I punti singolari di F si dispongono lungo una ellisse. (d) I punti singolari di F si dispongono lungo una iperbole. (e) F è iniettiva. (f) F è suriettiva. (g) L'immagine di F è contenuta nel primo quadrante. (h) L'immagine di F è limitata. 	
	Istruzioni. Segnare le risposte che si ritengono corrette. I fogli di brutta non devono essere con segnati. Durante la prova non è consentito l'uso di libri, appunti, calcolatrici e apparecchiatu elettroniche. Tempo. I ora e 30 minuti. (Domanda a risposta singola, 2 punti) Sia $f: \mathbb{R}^2 \to \mathbb{R}$ la funzione definita da $f(x,y) = (x^2 + y^2) e^{xy}.$ Sia $D_{\mathbf{v}} f(\mathbf{x}_0)$ la derivata direzionale di f lungo il versore $\mathbf{v} = (\frac{1}{2}, \frac{\sqrt{3}}{2})$ nel punto $\mathbf{x}_0 = (1, \frac{1}{2}, \frac{1}{2})$ nel punto $\mathbf{x}_0 = $

4. (Domanda a risposta singola, 2 punti) Si consideri l'integrale doppio

$$I = \iint_{\Omega} xy \, \mathrm{d}x \, \mathrm{d}y$$

 $\text{dove } \ \Omega = \{(x,y) \in \mathbb{R}^2 \ : \ x^2 + y^2 \leq 1 \, , \ x+y \geq 1 \} \, .$

(a)
$$I = 0$$
.

(b)
$$I = 1$$
.

$$(c) \quad I = -\frac{1}{2}.$$

(d)
$$I = \frac{1}{4}$$
.
(e) $I = -\frac{1}{6}$.

(e)
$$I = -\frac{1}{6}$$
.

$$(f) \quad I = \frac{1}{12}.$$

(g)
$$I = -\frac{1}{24}$$
.

5. (Domanda a risposta multipla, 3 punti) Si consideri l'integrale di linea

$$I = \int_{\gamma} \frac{1}{(1 + 3x + y + z)^{3/2}} \, \mathrm{d}s.$$

dove

$$\gamma: \begin{cases} x = t + t^2/2 \\ y = 1 - t \\ z = t^2/2 \end{cases} \qquad t \in [0, 1].$$

(a)
$$\gamma$$
 è contenuta nel piano π : $x + y + z = 1$.

(b)
$$\gamma$$
 è contenuta nel piano π : $x - y + z = 1$.

(c)
$$\gamma$$
 è contenuta nel piano π : $x+y-z=1$.

(d)
$$\gamma$$
 non è piana.

(e)
$$\gamma$$
 è regolare.

(f)
$$\gamma$$
 è biregolare.

(g)
$$I = 0$$
.

(h)
$$I = \frac{\pi}{2\sqrt{3}}$$
.

(i)
$$I = \frac{\pi}{6\sqrt{2}}$$
.

$$(j) \quad I = \frac{\pi}{6\sqrt{3}} \,.$$

6. (Domanda a risposta aperta, 3 punti) Il lavoro del campo

$$\mathbf{F} = (x - y - 2z, 2x + 3y - z, x + 2y + 2z)$$

lungo la curva (orientata opportunamente)

$$\gamma: \begin{cases} x^2 + y^2 + z^2 - 8x - 4y - 2z + 19 = 0\\ x - y - z = 1 \end{cases}$$

è
$$L = 2\sqrt{3} \ \pi$$
.

7. (Domanda a risposta aperta, 3 punti) Il flusso del campo

$$\mathbf{F} = (x + y + z, x - y + z, xy)$$

attraverso la superficie

$$\Sigma: \begin{cases} x = u \\ y = v \\ z = 0 \end{cases} \quad u, v \in [0, 1]$$

orientata mediante il versore $\mathbf{k} \;$ è $\Phi = 1/4$.

8. (Domanda a risposta aperta, 2 punti) Scrivere la soluzione generale dell'equazione differenziale

$$y''(x) - 4y'(x) + 4y(x) = e^x.$$

$$y(x) = c_1 e^{2x} + c_2 x e^{2x} + e^x, \ c_1, c_2 \in \mathbb{R}.$$

9. (Domanda a risposta multipla, 2 punti) Sia $f: \mathbb{R} \to \mathbb{R}$ la funzione 2π -periodica definita da

$$f(x) = \sin x \cdot \sin(x^2)$$
 per $x \in [-\pi, \pi)$

e sia $F(x) = \frac{a_0}{2} + \sum_{n \geq 1} (a_n \cos nx + b_n \sin nx)$ la sua serie di Fourier.

- (a) La serie F(x) converge in media quadratica su $[-\pi, \pi]$.
- (b) La serie F(x) converge puntualmente a f(x) per ogni $x \in \mathbb{R}$.
- (c) La serie F(x) converge puntualmente in $x = \pm \pi$, ma non a f(x).
- (d) La serie F(x) definisce una funzione continua su tutto \mathbb{R} .
- (e) I coefficienti a_n sono tutti nulli.
- (f) I coefficienti b_n sono tutti nulli.

10. (Domanda a risposta aperta, 2 punti) Scrivere il disco di convergenza della serie complessa

$$\sum_{n\geq 0} \frac{n!}{n^n} z^n.$$

$$D = \left\{ z \in \mathbb{C} \ : \ |z| < \mathbf{e} \right\}.$$

ESERCIZIO DA SVOLGERE (5 punti)

Calcolare l'integrale

$$I = \int_{\gamma} \frac{\mathrm{e}^{\pi/z^3}}{z(1 - \mathrm{i}\,z^3)} \,\mathrm{d}z$$

dove γ : |z| = 1/2 è orientata negativamente.

RISPOSTA

Si ha
$$\mathrm{Res}(f,0)=-1$$
e
$$I=-2\pi\mathrm{i}\,\mathrm{Res}(f,0)=2\pi\mathrm{i}\,.$$

DOMANDE TEORICHE (4 punti)

- 1. (0.5 punti) Dare la definizione di derivata direzionale di una funzione $\,f:\mathbb{R}^n \to \mathbb{R}\,.$
- $2.\ (0.5\ \mathrm{punti})$ Enunciare il teorema di Liouville per le funzioni complesse.
- 3. (3 punti) Enunciare e dimostrare il teorema di struttura dello spazio delle soluzioni di un'equazione lineare generale.